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Symmetry based approach to triplet correlation functions

A. Khein* and N. W. Ashcroft
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853
(Received 11 August 1998

Two related approaches to the theory of inhomogeneous classical systems are introduced, both yielding
analytic forms for triplet and higher-order direct correlation functions in the homogeneous limit. The present
theories lead to results that exactly obey the known sum rule relating the triplet direct correlation function to
the derivative of the Ornstein-Zernike function. The resulting triplet direct correlation functions are then found
to be simple products in both reciprocal and real space. Agreement with simulation results for the triplet direct
correlation function in the hard sphere fluid is generally found to be very good; even the simpler version of the
theory agrees well with the results of the more computationally intensive weighted density approximation.
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I. INTRODUCTION It has been shown for hard-sphere systems that when ap-
proximate functionals are constructed to reproduce the func-

cal inhomogeneous fluidd] is to accurately model the gen- tional expansion tahird order in the homogeneous limit
9 y 9 [2,3], there is a tendency for improvement in results for melt-

erally unkn.own EXCess He_lmholtz free enefgy( p(r)] of a ing parameters, trends also seen in the phase behavior of
system of .|nteract|ng partlples. The Igtter may be expressegofter potential systemigt]. It is at this order that nonlocal
?S a fur][c'ilonr?l r'rr]a?/lor series expansion about the hornogec'orrec:tions to weighted-density and related approximations

eous state, hamely, to density-functional theory first make an appearance, and
= accordingly the study of the DCFs, beyond second order is of
Fe)[p]:Nf(p)_nZl n_lf drl"'j dr e fundamental interest to the density-functional theory of melt-

ing; this is a major motivation behind the present pdagr

A primary aim of the density-functional theory of classi-

For homogeneous systems themselves, knowledge of higher-
X(Fyylnsp)Ap(ry) - Ap(ry), (1) order DCFs can also lead to improved closure relations for
. the distribution functions. For example, the third-order DCF
where Ap(r)=p(r) —p and f(p) is the excess free energy ., iqes the lowest-order correction to the bridge function
per particle of a homogeneous system. He(e)=(25(r  [g] 'leading in principle to an improved closure statement
—1i)) is the one-particle density of the inhomogeneous syspeyond the hypernetted chain approximation. In the next sec-
tem, withp=N/V, the average density of the uniform coun- (i, e briefly review some extant approximations to the
terpart. The functions forming the coefficients of the expanypirg.order direct correlation functions, and in Sec. Il we

sion are the hierarchy of direct correlation functidBsCFS  inoduce the symmetry based arguments for the approxima-
for which thg excess free energy is the generating functional; o proposed here. Section IV takes up the application of
they are defined by two separate symmetry based approximationscfdt to the

SF hard-sphere fluid where the results are shown to illustrate the
c(ry,. . fnip) olp] (20  important emerging role of nonlocality, which is further em-

=8 dp(ry)---p(rp)’ phasized in the discussion of Sec. V.

and they obey the real space sum rule,
Il. THIRD-ORDER DIRECT CORRELATION FUNCTIONS;

APPROXIMATIONS

0
(n) . — _ =1 .
f draCo (T1,---Mn3p) ap Coo (Fe,efn-1:p), Some time ago, Barrat, Hansen, and Past&dP) [7]

(3 introduced an elegant approach to the modeling of the triplet
direct correlation function particularly notable in what fol-
which can be written in Fourier space as the algebraic relaows for its symmetric structure. The rotational and transla-
tion, tional invariance of the homogeneous liquid as well as the
lowest ordeth-bond expansion of the triplet DCF led them to
consider the product forne{>(ry,r,;p) =t(r)t(r )t(rs),
where rq,r,,r3 are relative coordinate vectors between
three points in a plane, which satisty+r,+r;=0. A
unigue specification of the functiot{f) then follows from
*Present address: Morgan Stanley & Co., 1585 Broadway, Nevan application of Eq(3) at third order 6=3); it is subse-
York, NY 10036. quently determined from numerical solution of an integral

J
CB”>(q1,---,qn71,0;p)=%CB” YAy, ln-1:p)- (4)
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equation. However, the more demanding task computatiorsum rule on the third-order DCF be satisfied, but at the same
ally, an issue addressed in part here, is to find the Fourigime avoiding significant numerical impediments. As we
transform of the triple produdi8]. The BHP theory gives shall see, even the simpler of the two app!ications of this
good results for long-range potentials such as the CoulomBpproach yields DCFs that are already similar to the more
system, and indeed agrees well with molecular dynamic§omputationally intensive WDA calculation, and as will also
simulations of the soft sphere model near freefiig Nev- ~ be seen, the triplet DCFs introduced below exactly satisfy
ertheless, it does not predict a freezing transition in the hardthe sum rule, Eq(3), but with no discontinuities as found in
sphere system within the context of the extended modifiedh® HWDA. In what follows we present two versions of trip-
weighted density approximatioWWDA) [2], although no let DCF theories 'based on analytical weight functions; for
study has been performed to date to ascertain whether thirdlotational convenience, they are referred to as AT1 and AT2,
order extensions of local mappings such as the WBPor and we compare their predictions to Monte-Carlo simula-
the hybrid weighted density approximatighiWDA) [10]  Uons. _ _ _
also reach the same conclusion. Further, it has also proven !N attempting to formulate a relatively simple theory of
difficult so far to extend the BHP method to the calculationtiPlet correlations, the chief difficulty in directly applying
of higher-order DCF$7]; again, this is an issue to be ad- the BHP form arises from the triple product of real-space
dressed in what follows. functions and the complexity that arises from an integral
Soon after the work of BHP, it was observed] that the equation that subsequently results from enforcing the sum
WDA could also be used to directly calculate the third-order'ule of Eq.(3) in real space. However, we may observe that
and higher-order DCF’s but in a manner tiattomatically the sum rule condition is nevertheless a simplgebraic
satisfies Eq.(3). In the WDA, the excess free energy per relation in Fourier space and we are, therefore, likewise mo-
particle is given byFofp]=/dr p(r)f(p(r)), which is a tivated to introduce aymmetricalgebraic ansatz farf® in
mapping of the local excess free energy per particle onto Fourier spacelirectly. An elementary exampléactually one
new system at a coarse-grained density, self-consistently d&f the many possible suggestions the doublet form
termined by p(r)=/dr’'p(r')W(r—r';p(r)). The weight 3) _
function W(r—r’;p(r)), clearly taken here asocal, is 3¢y (A1,92) = Alp)[W(a) W(Qy) + W(q2) W(03)
uniquely determined by requiring the fl_Jnctlo_naI to reproduqe +W(gs)W(ay)], (5)
Eq. (1) at second order, and the resulting third-order DCF is
then found from repeateql fur_1ctiona| differen_tia_tiorfgt[p] which we refer to as AT1. Imposition of the sum rules(
[11,12. Thg weight function is not knowa priori anql must  _q |9,] =|as|=q) leads toA(p)=c§)2)'(q=0) from theq
be dgtermlned by the solution of a nonlinear differential _ 5 condition and then immediately to the elementary qua-
equation9]. Further, becausé/ has about the same range as dratic relation
the second-order DCF, the corresponding triplet DCF tends

to be too small at larger wave vectors. This problem is not W2(q)+2W(q)—3C'(q;p)=0 (6)
shared by the BHP approach, which is based on a real space
convolution. with the physically acceptable solution
The HWDA was proposed recently by Leidl and Wagner
[10], who pointed out that the numerical calculation of the W(q;p)=—1+y1+3C'(q;p), @)

weight function in the WDA might actually be circumvented h defi th functi C'(a

if the density argument of the weight function is replaced byW ezre/ Wez , efine € unc !On (Q’p)
a homogeneouconstant effective densityp, itself consis- =5 (4;p)/cf? (0;p) and where the weight functiokV
tently defined through the weight function. The latter is thensatisfies the normalizatioW(q— 0;p) = 1. The result here is
specified by the solution of a simple quadratic. Again, therelatively simple because the triplet DCF is taken to be di-
resulting triplet DCF exactly obeys E(B), butcg3)(q,q’) ig  rectly proportional to a product of known weight functions.
found to bediscontinuousat g’ =0 [10]. Consequently a NOte that the resulting triplet DCF obeys H§) exactlyand
considerable discrepancy can arise between the true triplé@llowing arguments similar to those given by BHIP, it is
DCF and the approximate counterpart at wave vectors justiSO €xact to second ordéas are both of the forms we pro-
beyond those satisfying the sum rule. We also note that Der20S€ hergin a wave-number expansion abayg’ =0. Note

ton and Ashcroff13] have proposed an analytic form for the &/S0 that for all densities, the density derivativeost dis-
triplet DCF by modeling the first-order DCF instead of the Plays damped oscillatory behavior progressing to zero at
excess free energy as achieved by the HWDA and the WDAlarge wave vector. AccordinglyC’ is a function with a
Using the mappingc™®(r;[p])=c{P(p(r)) and with p(r) maximum value of u_nlty(at q=_0) and for_ all densities it
defined as in the WDA above, they found amalytic expres- also decays to zero in an oscillatory fashion as wave vector

sion for the triplet DCF in Fourier space. But once again thdNcreases. The quadratic solution in H®) is, therefore,
resulting DCF does not satisfy E¢8). well-defined for the hard-sphere system. Finally, for lagge
C'(q) is small and the weight function therefore decays as

3C’(q) (for all p).
As a second and perhaps more interesting example, we
introduce an analytic theory that now goes considerably be-
With this as background, we now presentsgmmetry yond previous approaches by approximating the second-
basedansatz for triplet DCF's(applicable to higher-order order DCF in an inhomogeneous system through the state-
DCFs as we)l with the dual aims of requiring that the known ment cO(r,r";[p)=[c@(r—r";p(r)+cP(r

. SYMMETRY BASED APPROXIMATIONS
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FIG. 1. Triplet direct correlation functionsg3)(q,cose;p) for FIG. 3. As in Fig. 1, but fog=5.153.

isosceles triangle configurationg;|=|q,/=q=2.3045 and pack-

ing fraction =0.45, cos¥ being the angle betweeq, and q,.

Solid circles are simulation results with two standard deviation er-

ror bars[14]. The dashed and dotted curves are, respectively, theind this we shall call AT2. This direct product form in real

analytic theories AT1 and AT2. space is particularly notable becausgeihainsa direct prod-
uct in Fourier space; indeed, direct transformation yields

—r’;p(r’))]/2. Note that this form incorporates the physi-

cally important aspect of nonlocality, at least on an approxi- 3) N

mate basis. By taking the functional derivative, and by de- 6067 (01.02:p) =W(aDIc6” (G2) + o (03)]
fining Sp(r)/dp(r')=W(r—r'), we obtain c(r—r’,r W2 (gs)+¢? (ap)]
—1";p)=c&) (r—r")[W(r—r")+W(r'—r")]/2.  Further,
given three points, r’, r” and the definition of relative co- +W(gg)[c{?
ordinatesr,=r'—r", ro=r—r’, r3=r"—r, a symmetrized

ansatz for the triplet DCF in real space, becomes

(a)+c? (0], (9

whereq; + g,+q;=0. Taking thelg,| =|9,|=q, gq3=0 limit

6c< (ri,ra;p)= c0 (rl)[W(r2)+W(r3)] as before, and solving for the weight function, we obtain
& (r)[W(rg)+W(ry)] 2c®”
W(q:p) = (g;p) 10
o (ra)[W(r) +W(r)], (8 P2 p)+c<2> (q=0:p)’
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FIG. 2. As in Fig. 1, but foq=4.2074. FIG. 4. As in Fig. 1 but fog=6.024.
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0.8 - . r normalization and by the form of the second-order DCF.
Lack of detailed structure for cas>0 can now be readily
0.6 ———am ] understood from the observation that for large wave vectors,
~~~~~~~~~~~ AT2 the contribution to the DCF at, say, cé#s1 arises from

o4 I\ ] terms of the formwW(g)c?' (2§) and permutations. For the
] 3 hard-sphere system the second-order DCF is short ranged
91 ' and its density derivative is quite small, thereby making the
= 02 r % 1 contribution to the triplet DCF almost negligible for large
%o N ‘{_ﬁ H wave vectors. The results embodied in Fig. 5, therefore, give
N 00 - {\ oT— 4 ‘_,_}__‘_,_.__ important insight on the emerging role of nonlocality.
i_ } We may observe that the two forms just presented can be
E extended very simply to direct correlation functions beyond
i }' : third order. A straightforward approach is to propose Fourier
{ space forms involving a single weight function and then by a
~0.4 L s L subsequent appeal to tige=0 limit, invoking Eq. (4) until a
-1.0 —0.5 0.0 0.5 1.0 relation between the weight function and the derivative of
cosd the second-order DCF is reached. Again we see that the re-
sult must be a quadratic equation for the weight function. On
FIG. 5. As in Fig. 1 but forg=7.0404. the other hand, if accurate representations of higher-order
DCFs are already known, the DCF at the next higher level

_ o o may then be found by introducing more than a single weight
where againV satisfies the normalization/(q—0;p) =1. function into the factorization ansatz.

This second form also obeys the sum rule by definition of
the weight function and, as noted, retains its simple product
form in both real and Fourier space. The emerging form for
c® is clearly a consequence of a local density approxima-
tion.

V. DISCUSSION

By way of summary, we have introduced two simple ana-
lytic models leading to tripletand higher-orderDCFs that
IV. APPLICATION TO THE HARD-SPHERE FLUID o_bey a principal sum rule, but at the_same time, remain
simple to calculate in both real and Fourier space. Results are
By way of application we invoke these two approxima- generally in good agreement with simulation; for larger wave
tions for the dense, hard-sphere fluid. In Figs. 1-5 we plovectors they tend to lack some small structure for €e6
the triplet DCFs resulting from the two analytic forms for geometries but this is now understood to arise from the loss
isosceles triangle configurations with various choices ofbf information resulting from the role of nonlocality and the
wave-vector magnitudes, and at a packing fractionzof imposition of a homogenous limit in the determination of the
=0.45. Also shown are the results of Monte Carlo simula-weight function. It has been verified that the direct correla-
tions of the hard-sphere system with two standard deviatiotion functions introduced here give rise to a freezing transi-
error barg14]. All of the calculations use the Verlet-Weiss tion in short-range system(&] when used in conjunction
direct correlation function based on the Carnahan-Starlingvith recent extensions of the modified weighted density ap-
expression for the excess free energy of a homogeneous ligroximation. More generally, the use of the single integral
uid[15]. Consequently, the data point for ads—1 (cosfis  condition on an approximate form of triplet DCF appears
the angle between wave vectags and q,) is necessarily quite insufficient to specify the general behavior of the true
exact, and as noted above, both of our approaches are alB&CF and we may therefore expect that further developments
exact at this point. For the smallest wave vector consideredyill also need to take into account additional sum rules or
|qo|=2.3045(here|q,| =|g,|=|q]), both yield excellent re- scaling relations obeyed by the true triplet DCF. Finally,
sults, and they are seen to be well within the two standarthough the connection is not immediate in the numerical
deviation error bars of the simulation data. For larger wavesense, it is nevertheless evident that a proposition for a form
vectors, we also observe that the two theories continue tof the direct correlation function® also implies a form for
give generally accurate results for configurations satisfyinga corresponding total correlation functiofior example,
cos#<0, only lacking the detailed structure of the true DCFg®). Since the latter has been investigated by simulation
for cos#>0. In general, the two DCFs tend to exhibit very methods for the hard-sphere systgbs], a comparison can,
similar behavior, even though one is based on a simple syntherefore, be sought and this is under investigation.
metry ansatz, while the other is based on a local density
approximation to the second-order DCF. The results given
here are similar to those obtained from the more computa-
tionally demanding WDA[9], and the reason for this is
traced to the fact that much of the information inherent in the
weighted density is actuallyjost when the homogeneous  This work was supported by the National Science Foun-
limit is taken. An important consequence is that the weightdation through Grant No. DMR 9619854. We thank Dr. W.
function of the WDA is quite strongly constrained both by Ellis for helpful discussions.
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