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Symmetry based approach to triplet correlation functions
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~Received 11 August 1998!

Two related approaches to the theory of inhomogeneous classical systems are introduced, both yielding
analytic forms for triplet and higher-order direct correlation functions in the homogeneous limit. The present
theories lead to results that exactly obey the known sum rule relating the triplet direct correlation function to
the derivative of the Ornstein-Zernike function. The resulting triplet direct correlation functions are then found
to be simple products in both reciprocal and real space. Agreement with simulation results for the triplet direct
correlation function in the hard sphere fluid is generally found to be very good; even the simpler version of the
theory agrees well with the results of the more computationally intensive weighted density approximation.
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I. INTRODUCTION

A primary aim of the density-functional theory of class
cal inhomogeneous fluids@1# is to accurately model the gen
erally unknown excess Helmholtz free energyFex@r(r )# of a
system of interacting particles. The latter may be expres
as a functional Taylor series expansion about the homo
neous state, namely,

Fex@r#5N f~r!2 (
n51

`
1

n! E dr1¯E drnc0
~n!

3~r1 ,...,rn ;r!Dr~r1!¯Dr~rn!, ~1!

whereDr(r )5r(r )2r and f (r) is the excess free energ
per particle of a homogeneous system. Herer(r )5^( id(r
2r i)& is the one-particle density of the inhomogeneous s
tem, withr5N/V, the average density of the uniform cou
terpart. The functions forming the coefficients of the expa
sion are the hierarchy of direct correlation functions~DCFs!
for which the excess free energy is the generating functio
they are defined by

c0
~n!~r1 ,...,rn ;r!52b

dnFex@r#

dr~r1!¯dr~rn!
, ~2!

and they obey the real space sum rule,

E drnc0
~n!~r1 ,...,rn ;r!5

]

]r
c0

~n21!~r1 ,...,rn21 ;r!,

~3!

which can be written in Fourier space as the algebraic r
tion,

c0
~n!~q1 ,...,qn21,0;r!5

]

]r
c0

~n21!~q1 ,...,qn21 ;r!. ~4!
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It has been shown for hard-sphere systems that when
proximate functionals are constructed to reproduce the fu
tional expansion tothird order in the homogeneous limi
@2,3#, there is a tendency for improvement in results for me
ing parameters, trends also seen in the phase behavio
softer potential systems@4#. It is at this order that nonloca
corrections to weighted-density and related approximati
to density-functional theory first make an appearance,
accordingly the study of the DCFs, beyond second order i
fundamental interest to the density-functional theory of me
ing; this is a major motivation behind the present paper@5#.
For homogeneous systems themselves, knowledge of hig
order DCFs can also lead to improved closure relations
the distribution functions. For example, the third-order DC
provides the lowest-order correction to the bridge funct
@6#, leading in principle to an improved closure stateme
beyond the hypernetted chain approximation. In the next s
tion we briefly review some extant approximations to t
third-order direct correlation functions, and in Sec. III w
introduce the symmetry based arguments for the approxi
tions proposed here. Section IV takes up the application
two separate symmetry based approximations forc(3) to the
hard-sphere fluid where the results are shown to illustrate
important emerging role of nonlocality, which is further em
phasized in the discussion of Sec. V.

II. THIRD-ORDER DIRECT CORRELATION FUNCTIONS;
APPROXIMATIONS

Some time ago, Barrat, Hansen, and Pastore~BHP! @7#
introduced an elegant approach to the modeling of the tri
direct correlation function particularly notable in what fo
lows for its symmetric structure. The rotational and trans
tional invariance of the homogeneous liquid as well as
lowest orderh-bond expansion of the triplet DCF led them
consider the product formc0

(3)(r1 ,r2 ;r)5t(r1)t(r2)t(r3),
where r1 , r2 , r3 are relative coordinate vectors betwe
three points in a plane, which satisfyr11r21r350. A
unique specification of the functiont(r¢) then follows from
an application of Eq.~3! at third order (n53); it is subse-
quently determined from numerical solution of an integ

w
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1804 PRE 59A. KHEIN AND N. W. ASHCROFT
equation. However, the more demanding task computat
ally, an issue addressed in part here, is to find the Fou
transform of the triple product@8#. The BHP theory gives
good results for long-range potentials such as the Coulo
system, and indeed agrees well with molecular dynam
simulations of the soft sphere model near freezing@7#. Nev-
ertheless, it does not predict a freezing transition in the ha
sphere system within the context of the extended modi
weighted density approximation~WDA! @2#, although no
study has been performed to date to ascertain whether t
order extensions of local mappings such as the WDA@9# or
the hybrid weighted density approximation~HWDA! @10#
also reach the same conclusion. Further, it has also pro
difficult so far to extend the BHP method to the calculati
of higher-order DCFs@7#; again, this is an issue to be ad
dressed in what follows.

Soon after the work of BHP, it was observed@11# that the
WDA could also be used to directly calculate the third-ord
and higher-order DCF’s but in a manner thatautomatically
satisfies Eq.~3!. In the WDA, the excess free energy p
particle is given byFex@r#5*dr r(r ) f „r̄(r )…, which is a
mapping of the local excess free energy per particle on
new system at a coarse-grained density, self-consistently
termined by r̄(r )[*dr 8r(r 8)W„r2r 8; r̄(r )…. The weight
function W„r2r 8; r̄(r )…, clearly taken here aslocal, is
uniquely determined by requiring the functional to reprodu
Eq. ~1! at second order, and the resulting third-order DCF
then found from repeated functional differentiation ofFex@r#
@11,12#. The weight function is not knowna priori and must
be determined by the solution of a nonlinear different
equation@9#. Further, becauseW has about the same range
the second-order DCF, the corresponding triplet DCF te
to be too small at larger wave vectors. This problem is
shared by the BHP approach, which is based on a real s
convolution.

The HWDA was proposed recently by Leidl and Wagn
@10#, who pointed out that the numerical calculation of t
weight function in the WDA might actually be circumvente
if the density argument of the weight function is replaced
a homogeneous~constant! effective densityr̂, itself consis-
tently defined through the weight function. The latter is th
specified by the solution of a simple quadratic. Again,
resulting triplet DCF exactly obeys Eq.~3!, but c0

(3)(q,q8) is
found to bediscontinuousat q850 @10#. Consequently a
considerable discrepancy can arise between the true tr
DCF and the approximate counterpart at wave vectors
beyond those satisfying the sum rule. We also note that D
ton and Ashcroft@13# have proposed an analytic form for th
triplet DCF by modeling the first-order DCF instead of t
excess free energy as achieved by the HWDA and the W
Using the mappingc(1)(r ;@r#)5c0

(1)
„r̄(r )… and with r̄(r )

defined as in the WDA above, they found ananalyticexpres-
sion for the triplet DCF in Fourier space. But once again
resulting DCF does not satisfy Eq.~3!.

III. SYMMETRY BASED APPROXIMATIONS

With this as background, we now present asymmetry
basedansatz for triplet DCF’s~applicable to higher-orde
DCFs as well! with the dual aims of requiring that the know
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sum rule on the third-order DCF be satisfied, but at the sa
time avoiding significant numerical impediments. As w
shall see, even the simpler of the two applications of t
approach yields DCFs that are already similar to the m
computationally intensive WDA calculation, and as will als
be seen, the triplet DCFs introduced below exactly sati
the sum rule, Eq.~3!, but with no discontinuities as found in
the HWDA. In what follows we present two versions of trip
let DCF theories based on analytical weight functions;
notational convenience, they are referred to as AT1 and A
and we compare their predictions to Monte-Carlo simu
tions.

In attempting to formulate a relatively simple theory
triplet correlations, the chief difficulty in directly applying
the BHP form arises from the triple product of real-spa
functions and the complexity that arises from an integ
equation that subsequently results from enforcing the s
rule of Eq.~3! in real space. However, we may observe th
the sum rule condition is nevertheless a simplealgebraic
relation in Fourier space and we are, therefore, likewise m
tivated to introduce asymmetricalgebraic ansatz forc0

(3) in
Fourier spacedirectly. An elementary example~actually one
of the many possible suggestions! is the doublet form

3c0
~3!~q1 ,q2!5A~r!@W~q1!W~q2!1W~q2!W~q3!

1W~q3!W~q1!#, ~5!

which we refer to as AT1. Imposition of the sum rule (q3

50, uq2u5uq3u[q) leads toA(r)5c0
(2)8(q50) from theq

50 condition and then immediately to the elementary qu
dratic relation

W2~q!12W~q!23C8~q;r!50 ~6!

with the physically acceptable solution

W~q;r!5211A113C8~q;r!, ~7!

where we define the function C8(q;r)

5c0
(2)8(q;r)/c0

(2)8(0;r) and where the weight functionW
satisfies the normalizationW(q→0;r)51. The result here is
relatively simple because the triplet DCF is taken to be
rectly proportional to a product of known weight function
Note that the resulting triplet DCF obeys Eq.~3! exactlyand
following arguments similar to those given by BHP@7#, it is
also exact to second order~as are both of the forms we pro
pose here! in a wave-number expansion aboutq,q850. Note
also that for all densities, the density derivative ofc(2) dis-
plays damped oscillatory behavior progressing to zero
large wave vector. Accordingly,C8 is a function with a
maximum value of unity~at q50) and for all densities it
also decays to zero in an oscillatory fashion as wave ve
increases. The quadratic solution in Eq.~7! is, therefore,
well-defined for the hard-sphere system. Finally, for largeq,
C8(q) is small and the weight function therefore decays
3
2 C8(q) ~for all r!.

As a second and perhaps more interesting example,
introduce an analytic theory that now goes considerably
yond previous approaches by approximating the seco
order DCF in an inhomogeneous system through the st
ment c(2)(r ,r 8;@r#)5@c0

(2)
„r2r 8; r̄(r )…1c0

(2)
„r
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2r 8; r̄(r 8)…#/2. Note that this form incorporates the phys
cally important aspect of nonlocality, at least on an appro
mate basis. By taking the functional derivative, and by
fining dr̄(r )/dr(r 8)[W(r2r 8), we obtain c0

(3)(r2r 8,r

2r 9;r)5c0
(2)8(r2r 8)@W(r2r 9)1W(r 82r 9)#/2. Further,

given three pointsr , r 8, r 9 and the definition of relative co
ordinatesr15r 82r 9, r25r2r 8, r35r 92r , a symmetrized
ansatz for the triplet DCF in real space, becomes

6c0
~3!~r1 ,r2 ;r!5c0

~2!8~r1!@W~r2!1W~r3!#

1c0
~2!8~r2!@W~r3!1W~r1!#

1c0
~2!8~r3!@W~r1!1W~r2!#, ~8!

FIG. 1. Triplet direct correlation functionsc0
(3)(q,cosu;r) for

isosceles triangle configurationsuq1u5uq2u[q52.3045 and pack-
ing fraction h50.45, cosu being the angle betweenq1 and q2 .
Solid circles are simulation results with two standard deviation
ror bars@14#. The dashed and dotted curves are, respectively,
analytic theories AT1 and AT2.

FIG. 2. As in Fig. 1, but forq54.2074.
i-
-

and this we shall call AT2. This direct product form in re
space is particularly notable because itremainsa direct prod-
uct in Fourier space; indeed, direct transformation yields

6c0
~3!~q1 ,q2 ;r!5W~q1!@c0

~2!8~q2!1c0
~2!8~q3!#

1W~q2!@c0
~2!8~q3!1c0

~2!8~q1!#

1W~q3!@c0
~2!8~q1!1c0

~2!8~q2!#, ~9!

whereq11q21q350. Taking theuq1u5uq2u[q, q350 limit
as before, and solving for the weight function, we obtain

W~q;r!5
2c0

~2!8~q;r!

c0
~2!8~q;r!1c0

~2!8~q50;r!
, ~10!

r-
e

FIG. 3. As in Fig. 1, but forq55.153.

FIG. 4. As in Fig. 1 but forq56.024.
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1806 PRE 59A. KHEIN AND N. W. ASHCROFT
where againW satisfies the normalizationW(q→0;r)51.
This second form also obeys the sum rule by definition

the weight function and, as noted, retains its simple prod
form in both real and Fourier space. The emerging form
c(3) is clearly a consequence of a local density approxim
tion.

IV. APPLICATION TO THE HARD-SPHERE FLUID

By way of application we invoke these two approxim
tions for the dense, hard-sphere fluid. In Figs. 1–5 we p
the triplet DCFs resulting from the two analytic forms f
isosceles triangle configurations with various choices
wave-vector magnitudes, and at a packing fraction ofh
50.45. Also shown are the results of Monte Carlo simu
tions of the hard-sphere system with two standard devia
error bars@14#. All of the calculations use the Verlet-Weis
direct correlation function based on the Carnahan-Star
expression for the excess free energy of a homogeneous
uid @15#. Consequently, the data point for cosu521 (cosu is
the angle between wave vectorsq1 and q2) is necessarily
exact, and as noted above, both of our approaches are
exact at this point. For the smallest wave vector conside
uqsu52.3045~hereuq1u5uq2u[uqu), both yield excellent re-
sults, and they are seen to be well within the two stand
deviation error bars of the simulation data. For larger wa
vectors, we also observe that the two theories continue
give generally accurate results for configurations satisfy
cosu,0, only lacking the detailed structure of the true DC
for cosu.0. In general, the two DCFs tend to exhibit ve
similar behavior, even though one is based on a simple s
metry ansatz, while the other is based on a local den
approximation to the second-order DCF. The results gi
here are similar to those obtained from the more comp
tionally demanding WDA@9#, and the reason for this i
traced to the fact that much of the information inherent in
weighted density is actuallylost when the homogeneou
limit is taken. An important consequence is that the wei
function of the WDA is quite strongly constrained both b

FIG. 5. As in Fig. 1 but forq57.0404.
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normalization and by the form of the second-order DC
Lack of detailed structure for cosu.0 can now be readily
understood from the observation that for large wave vect
the contribution to the DCF at, say, cosu51 arises from

terms of the formW(q¢)c0
(2)8(2q¢) and permutations. For the

hard-sphere system the second-order DCF is short ran
and its density derivative is quite small, thereby making
contribution to the triplet DCF almost negligible for larg
wave vectors. The results embodied in Fig. 5, therefore, g
important insight on the emerging role of nonlocality.

We may observe that the two forms just presented can
extended very simply to direct correlation functions beyo
third order. A straightforward approach is to propose Four
space forms involving a single weight function and then b
subsequent appeal to theq50 limit, invoking Eq. ~4! until a
relation between the weight function and the derivative
the second-order DCF is reached. Again we see that the
sult must be a quadratic equation for the weight function.
the other hand, if accurate representations of higher-o
DCFs are already known, the DCF at the next higher le
may then be found by introducing more than a single wei
function into the factorization ansatz.

V. DISCUSSION

By way of summary, we have introduced two simple an
lytic models leading to triplet~and higher-order! DCFs that
obey a principal sum rule, but at the same time, rem
simple to calculate in both real and Fourier space. Results
generally in good agreement with simulation; for larger wa
vectors they tend to lack some small structure for cosu.0
geometries but this is now understood to arise from the l
of information resulting from the role of nonlocality and th
imposition of a homogenous limit in the determination of t
weight function. It has been verified that the direct corre
tion functions introduced here give rise to a freezing tran
tion in short-range systems@5# when used in conjunction
with recent extensions of the modified weighted density
proximation. More generally, the use of the single integ
condition on an approximate form of triplet DCF appea
quite insufficient to specify the general behavior of the tr
DCF and we may therefore expect that further developme
will also need to take into account additional sum rules
scaling relations obeyed by the true triplet DCF. Final
though the connection is not immediate in the numeri
sense, it is nevertheless evident that a proposition for a f
of the direct correlation functionc(3) also implies a form for
a corresponding total correlation function~for example,
g(3)). Since the latter has been investigated by simulat
methods for the hard-sphere system@16#, a comparison can
therefore, be sought and this is under investigation.
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